双极性晶体管

二极管

ESD保护、TVS、滤波和信号调节ESD保护

MOSFET

氮化镓场效应晶体管(GaN FET)

绝缘栅双极晶体管(IGBTs)

模拟和逻辑IC

汽车应用认证产品(AEC-Q100/Q101)

74HC191D

Presettable synchronous 4-bit binary up/down counter

The 74HC191 is an asynchronously presettable 4-bit binary up/down counter. It contains four master/slave flip-flops with internal gating and steering logic to provide asynchronous preset and synchronous count-up and count-down operation. Asynchronous parallel load capability permits the counter to be preset to any desired value. Information present on the parallel data inputs (D0 to D3) is loaded into the counter and appears on the outputs when the parallel load (PL) input is LOW. This operation overrides the counting function. Counting is inhibited by a HIGH level on the count enable (CE) input. When CE is LOW internal state changes are initiated synchronously by the LOW-to-HIGH transition of the clock input. The up/down (U/D) input signal determines the direction of counting as indicated in the function table. The CE input may go LOW when the clock is in either state, however, the LOW-to-HIGH CE transition must occur only when the clock is HIGH. Also, the U/D input should be changed only when either CE or CP is HIGH. Overflow/underflow indications are provided by two types of outputs, the terminal count (TC) and ripple clock (RC). The TC output is normally LOW and goes HIGH when a circuit reaches zero in the count-down mode or reaches '15' in the count-up-mode. The TC output will remain HIGH until a state change occurs, either by counting or presetting, or until U/D is changed. Do not use the TC output as a clock signal because it is subject to decoding spikes. The TC signal is used internally to enable the RC output. When TC is HIGH and CE is LOW, the RC output follows the clock pulse (CP). This feature simplifies the design of multistage counters as shown in Figure 1 and Figure 2. In Figure 1, each RC output is used as the clock input to the next higher stage. It is only necessary to inhibit the first stage to prevent counting in all stages, since a HIGH on CE inhibits the RC output pulse. The timing skew between state changes in the first and last stages is represented by the cumulative delay of the clock as it ripples through the preceding stages. This can be a disadvantage of this configuration in some applications. Figure 2 shows a method of causing state changes to occur simultaneously in all stages. The RC outputs propagate the carry/borrow signals in ripple fashion and all clock inputs are driven in parallel. In this configuration the duration of the clock LOW state must be long enough to allow the negative-going edge of the carry/borrow signal to ripple through to the last stage before the clock goes HIGH. Since the RC output of any package goes HIGH shortly after its CP input goes HIGH there is no such restriction on the HIGH-state duration of the clock. In Figure 3, the configuration shown avoids ripple delays and their associated restrictions. Combining the TC signals from all the preceding stages forms the CE input for a given stage. An enable must be included in each carry gate in order to inhibit counting. The TC output of a given stage it not affected by its own CE signal therefore the simple inhibit scheme of Figure 1 and Figure 2 does not apply. Inputs include clamp diodes. This enables the use of current limiting resistors to interface inputs to voltages in excess of VCC.

Features and benefits

  • Wide supply voltage range from 2.0 to 6.0 V

  • CMOS low power dissipation

  • High noise immunity

  • Latch-up performance exceeds 100 mA per JESD 78 Class II Level B

  • CMOS input levels

  • Synchronous reversible counting

  • Asynchronous parallel load

  • Count enable control for synchronous expansion

  • Single up/down control input

  • Complies with JEDEC standards:

    • JESD8C (2.7 V to 3.6 V)

    • JESD7A (2.0 V to 6.0 V)

  • ESD protection:

    • HBM: ANSI/ESDA/JEDEC JS-001 class 2 exceeds 2000 V

    • CDM: ANSI/ESDA/JEDEC JS-002 class C3 exceeds 1000 V

  • Specified from -40 °C to +85 °C and -40 °C to +125 °C

参数类型

型号 VCC (V) Output drive capability (mA) Logic switching levels tpd (ns) Power dissipation considerations Tamb (°C) Package name
74HC191D 2.0 - 6.0 ± 5.2 CMOS 22 low -40~125 SO16

封装

型号 可订购的器件编号,(订购码(12NC)) 状态 标示 封装 外形图 回流焊/波峰焊 包装
74HC191D 74HC191D,653
(933714600653)
Active 74HC191D SOT109-1
SO16
(SOT109-1)
SOT109-1 SO-SOJ-REFLOW
SO-SOJ-WAVE
WAVE_BG-BD-1
暂无信息

下表中的所有产品型号均已停产 。

型号 可订购的器件编号,(订购码(12NC)) 状态 标示 封装 外形图 回流焊/波峰焊 包装
74HC191D 74HC191D,652
(933714600652)
Withdrawn / End-of-life 74HC191D SOT109-1
SO16
(SOT109-1)
SOT109-1 SO-SOJ-REFLOW
SO-SOJ-WAVE
WAVE_BG-BD-1
SOT109-1_652

环境信息

型号 可订购的器件编号 化学成分 RoHS RHF指示符
74HC191D 74HC191D,653 74HC191D rohs rhf rhf

下表中的所有产品型号均已停产 。

型号 可订购的器件编号 化学成分 RoHS RHF指示符
74HC191D 74HC191D,652 74HC191D rohs rhf rhf
品质及可靠性免责声明

文档 (11)

文件名称 标题 类型 日期
74HC191 Presettable synchronous 4-bit binary up/down counter Data sheet 2024-03-14
AN11044 Pin FMEA 74HC/74HCT family Application note 2019-01-09
SOT109-1 3D model for products with SOT109-1 package Design support 2020-01-22
Nexperia_package_poster Nexperia package poster Leaflet 2020-05-15
SO16_SOT109-1_mk plastic, small outline package; 16 leads; 1.27 mm pitch; 9.9 mm x 3.9 mm x 1.35 mm body Marcom graphics 2017-01-28
SOT109-1 plastic, small outline package; 16 leads; 1.27 mm pitch; 9.9 mm x 3.9 mm x 1.75 mm body Package information 2023-11-07
74HC191D_Nexperia_Product_Reliability 74HC191D Nexperia Product Reliability Quality document 2024-06-16
SO-SOJ-REFLOW Footprint for reflow soldering Reflow soldering 2009-10-08
HCT_USER_GUIDE HC/T User Guide User manual 1997-10-31
SO-SOJ-WAVE Footprint for wave soldering Wave soldering 2009-10-08
WAVE_BG-BD-1 Wave soldering profile Wave soldering 2021-09-08

支持

如果您需要设计/技术支持,请告知我们并填写 应答表 我们会尽快回复您。

模型

文件名称 标题 类型 日期
SOT109-1 3D model for products with SOT109-1 package Design support 2020-01-22

订购、定价与供货

型号 Orderable part number Ordering code (12NC) 状态 包装 Packing Quantity 在线购买
74HC191D 74HC191D,653 933714600653 Active 暂无信息 2,500 订单产品

样品

作为 Nexperia 的客户,您可以通过我们的销售机构订购样品。

如果您没有 Nexperia 的直接账户,我们的全球和地区分销商网络可为您提供 Nexperia 样品支持。查看官方经销商列表

How does it work?

The interactive datasheets are based on the Nexperia MOSFET precision electrothermal models. With our interactive datasheets you can simply specify your own conditions interactively. Start by changing the values of the conditions. You can do this by using the sliders in the condition fields. By dragging the sliders you will see how the MOSFET will perform at the new conditions set.

可订购部件

型号 可订购的器件编号 订购代码(12NC) 封装 从经销商处购买
74HC191D 74HC191D,653 933714600653 SOT109-1 订单产品