Orderable parts
Type number | Orderable part number | Ordering code (12NC) | Package | Buy from distributors |
---|---|---|---|---|
HEF4053BTT | HEF4053BTT,118 | 935263512118 | SOT403-1 | Order product |
Register once, drag and drop ECAD models into your CAD tool and speed up your design.
Click here for more informationTriple single-pole double-throw analog switch
The HEF4053B is a triple single-pole double-throw analog switch (3x SPDT) suitable for use in analog or digital 2:1 multiplexer/demultiplexer applications. Each switch features a digital select input (Sn), two independent inputs/outputs (Y0 and Y1) and a common input/output (Z). A digital enable input (E) is common to all switches. When E is HIGH, the switches are turned off. Inputs include clamp diodes. This enables the use of current limiting resistors to interface inputs to voltages in excess of VDD.
Wide supply voltage range from 3.0 V to 15.0 V
CMOS low power dissipation
High noise immunity
Fully static operation
5 V, 10 V, and 15 V parametric ratings
Standardized symmetrical output characteristics
Complies with JEDEC standard JESD 13-B
HBM: ANSI/ESDA/JEDEC JS-001 class 2 exceeds 2000 V
CDM: ANSI/ESDA/JEDEC JS-002 class C3 exceeds 1000 V
Specified from -40 °C to +125 °C
Analog multiplexing and demultiplexing
Digital multiplexing and demultiplexing
Signal gating
Type number | Configuration | VCC (V) | Logic switching levels | RON (Ω) | RON(FLAT) (Ω) | f(-3dB) (MHz) | THD (%) | Xtalk (dB) | Power dissipation considerations | Tamb (°C) | Package name |
---|---|---|---|---|---|---|---|---|---|---|---|
HEF4053BTT | SPDT-Z | 3.0 - 15 | CMOS | 175 | 30 | 70 | 0.04 | -50 | very low | -40~85 | TSSOP16 |
Model Name | Description |
---|---|
|
Type number | Orderable part number, (Ordering code (12NC)) | Status | Marking | Package | Package information | Reflow-/Wave soldering | Packing |
---|---|---|---|---|---|---|---|
HEF4053BTT | HEF4053BTT,118 (935263512118) |
Active | HEF4053 |
TSSOP16 (SOT403-1) |
SOT403-1 |
SSOP-TSSOP-VSO-WAVE
|
SOT403-1_118 |
Type number | Orderable part number | Chemical content | RoHS | RHF-indicator |
---|---|---|---|---|
HEF4053BTT | HEF4053BTT,118 | HEF4053BTT |
File name | Title | Type | Date |
---|---|---|---|
HEF4053B | Triple single-pole double-throw analog switch | Data sheet | 2024-07-25 |
AN11051 | Pin FMEA HEF4000 family | Application note | 2019-01-09 |
SOT403-1 | 3D model for products with SOT403-1 package | Design support | 2020-01-22 |
hef4053b | HEF4053B IBIS model | IBIS model | 2022-06-17 |
Nexperia_package_poster | Nexperia package poster | Leaflet | 2020-05-15 |
TSSOP16_SOT403-1_mk | plastic, thin shrink small outline package; 16 leads; 0.65 mm pitch; 5 mm x 4.4 mm x 1.1 mm body | Marcom graphics | 2017-01-28 |
SOT403-1 | plastic, thin shrink small outline package; 16 leads; 5 mm x 4.4 mm x 1.2 mm body | Package information | 2023-11-08 |
SOT403-1_118 | TSSOP16; Reel pack for SMD, 13"; Q1/T1 product orientation | Packing information | 2020-04-21 |
HEF4053BTT_Nexperia_Product_Reliability | HEF4053BTT Nexperia Product Reliability | Quality document | 2024-06-16 |
SSOP-TSSOP-VSO-WAVE | Footprint for wave soldering | Wave soldering | 2009-10-08 |
If you are in need of design/technical support, let us know and fill in the answer form we'll get back to you shortly.
Model Name | Description |
---|---|
|
Type number | Orderable part number | Ordering code (12NC) | Status | Packing | Packing Quantity | Buy online |
---|---|---|---|---|---|---|
HEF4053BTT | HEF4053BTT,118 | 935263512118 | Active | SOT403-1_118 | 2,500 | Order product |
As a Nexperia customer you can order samples via our sales organization.
If you do not have a direct account with Nexperia our network of global and regional distributors is available and equipped to support you with Nexperia samples. Check out the list of official distributors.
The interactive datasheets are based on the Nexperia MOSFET precision electrothermal models. With our interactive datasheets you can simply specify your own conditions interactively. Start by changing the values of the conditions. You can do this by using the sliders in the condition fields. By dragging the sliders you will see how the MOSFET will perform at the new conditions set.